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Summary Economists are often interested in identifying effective policies or treatments
together with subpopulations of individuals who respond positively (or with a sign that is
expected) to these treatment interventions. In this paper, we propose an optimal false discovery
rate controlling method that is especially useful for such one-sided testing problems. The
proposed procedure is optimal in the sense of minimizing the false non-discovery rate while
controlling the false discovery rate at a pre-specified level; it uses a deconvolution method
based on non-parametric maximum likelihood estimation, which allows for a broader class of
treatment effect distributions than existing methods do. The proposed test demonstrates good
small-sample performance in Monte Carlo simulations and it is applied to study the effect of
attending a more selective high school in Romania. The application reveals strong evidence of
treatment effect heterogeneity, in that students who marginally gain access to higher-ranked
schools are more likely to benefit if the higher-ranked school has a relatively high admission
score cut-off – or, in other words, is more selective.

Keywords: False discovery rate control, Multiple testing, Treatment effect heterogeneity.

1. INTRODUCTION

It is widely accepted that individuals have heterogeneous responses to policy interventions or
exogenous shocks in many economic applications. There are ample examples where making
inference on these heterogeneous effects may be of interest. For instance, economists and
policymakers are often interested in identifying effective policies or treatments together with
subpopulations of individuals who respond positively to these policies or treatment interventions
(or with a sign that is expected by these interventions). Such an inference problem often requires
consideration of multiple comparisons of many estimators or multiple testing of many hypotheses
simultaneously. However, unlike disciplines such as biology and especially genomics, the
economics literature has, until recently, focused primarily on multiple testing procedures that
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control for family-wise error rate (FWER); see, e.g. Anderson (2008), Lee and Shaikh (2013) and
Armstrong and Shen (2015). When the number of hypotheses is large, classic FWER controlling
procedures typically have very low power. If the economist or policymaker is interested in
determining which subpopulations have a positive effect, then it is not only important to control
for multiple testing errors, but also to make sure the multiple testing procedure has sufficient
power to correctly find the positively responsive subpopulations. Recent papers such as Hsu
et al. (2014) and Fishe and Smith (2012) extend and apply existing false discovery proportion
(FDP) and false discovery rate (FDR) controlling procedures to economics and finance settings.
We provide formal definitions of various error rates in the Appendix and we refer the readers to
Romano et al. (2008) for a comprehensive survey of different multiple testing methods.

The goal of this paper is to propose an FDR controlling testing procedure with optimal power
for multiple composite one-sided tests. FDR controlling tests, first proposed by Benjamini and
Hochberg (1995), control for the expected value of the FDP, the proportion of Type I errors
among all rejections, under some pre-specified level. The counterpart of FDR is the false non-
discovery rate (FNR), which is the expected value of the false non-discovery proportion (FNP),
the proportion of Type II errors among all non-rejections. The test we propose is optimal in the
sense of minimizing the FNR while controlling FDR at a pre-specified level asymptotically as
the number of hypotheses goes to infinity. The proposed test is a useful complement to classic
FWER control procedures, or other more prudent or conservative testing procedures, when the
number of hypotheses becomes large.

The proposed test contributes to the multiple testing literature in several ways. First, most of
the recent advances – such as Genovese and Wasserman (2002), Efron (2004a,b) and Sun and
Cai (2007), among many others – in the FDR literature focus on testing a simple null hypothesis
of zero effect against two-sided or one-sided alternatives. This is because it is natural to assume,
in large-scale biology or genomic studies, that the majority of the effects tested are from a simple
null of zero effect (the statistics literature often calls this assumption of the null distribution the
‘sparsity’ condition). However, in many social science applications, one often desires a one-sided
test and sparsity is unlikely to hold because it is not desirable to assume a priori that those who
do not respond positively to a policy change are unaffected by the policy at all. For example,
in the empirical section, we revisit Pop-Eleches and Urquiola (2013) and we study the effect of
attending a more selective high school in Romania. As discovered by Pop-Eleches and Urquiola
(2013), marginal students who attend a more selective high school can face negative interactions
with peers. When testing for a positive effect, it is not desirable to assume away potential negative
effects for some specific towns or schools.

For one-sided testing, assuming sparsity is equivalent to utilizing the least favourable
configuration when constructing the decision rule of the test. When the null is heterogeneous,
it has long been recognized that the use of the least favourable configuration jeopardizes power.
Andrews and Soares (2010) propose the use of a moment selection method to avoid the least
favourable configuration in the moment (in)equality literature, following the recentring idea first
introduced in Hansen (2005). Hsu et al. (2014) adopt the same idea in the context of FDP testing.
Our tests do not impose the least favourable configuration either. We take full account of the
heterogeneity in the null region. Instead of a step-wise FDP procedure, we propose a single-step
thresholding procedure based on a decision theoretic framework that is optimal in the sense of
minimizing FNR, while controlling for FDR at a pre-specified level.

Our method is closely related to the FDR controlling procedure proposed in Sun and
McLain (2012), which is designed for two-sided multiple testing with composite null hypotheses.
Compared to Sun and McLain (2012), we identify an assumption that determines optimality of
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the proposed procedure and is at the same time easy to verify. We also find that for one-sided
multiple testing, the optimal procedure that depends on the likelihood ratio statistics is equivalent
to a procedure that depends on the p-value. This is in contrast to conclusions in the two-sided
multiple testing literature where the latter is not optimal, as discussed in Sun and Cai (2007)
and Sun and McLain (2012). Additionally, the procedure in Sun and McLain (2012) requires
independence between the effect and its associated variances, which is likely to be violated in
many economic applications. Our method avoids this independence assumption.

Second, our proposed procedure requires estimation of the effect distribution. For the
estimation, we propose to use a deconvolution method based on non-parametric maximum
likelihood estimation (NPMLE). Compared to the empirical characteristic function based kernel
deconvolution method – see, e.g. Sun and Cai (2007) and Sun and McLain (2012) – that restricts
the effect distribution to be continuous with smooth density, our approach admits a larger class of
distributions, which includes distributions that are continuous, discrete or a combination of both.
When applied to treatment effect evaluation, our test could be used to test for positive treatment
effects (or treatment effects exceeding some pre-determined threshold). The NPMLE method
that we propose for the testing procedure then provides, as a side product, a consistent estimator
for the treatment effect distribution across observationally equivalent subpopulations.

We discuss the use of two NPMLE-based deconvolution methods in testing: the classic, or
vanilla, NPMLE method (cf. Kiefer and Wolfowitz, 1956) and a new hybrid method, which
first estimates the probability that the effect takes the value of the cut-off of the one-sided
null hypothesis and then conducts a restricted NPMLE by plugging in the consistent first-step
estimator. We show that when classic NPMLE is used, our testing procedure is asymptotically
equivalent to the Oracle procedure that minimizes FNR and controls FDR with known effect
distribution, if there is no probability mass at the cut-off value of the one-sided null. When the
hybrid NPMLE method is used, our testing procedure is asymptotically equivalent to the Oracle
procedure even when there is non-trivial probability mass at the cut-off value of the one-sided
null.

We conduct simulation exercises to compare the performance of the proposed tests with other
existing tests in the literature. Despite their popularity, FDR controlling procedures are subject
to the criticism that they do not account for the variability of the FDP; hence, in practice, such
procedures could result in a large realized FDP. However, as discussed in Heller (2010) and
further confirmed by our simulation studies, this issue is less of a concern – if at all – when
the test statistics are independent compared to when the test statistics are dependent. Besides,
our simulation results show that: (a) multiple testing procedures that control FWER or FDP are
too conservative and have low power for several data-generating processes (DGPs); (b) existing
FDR controlling methods with simple null versus composite alternative, such as the Benjamini
and Hochberg (1995) procedure, for example, and its adapted version considered in Benjamini
et al. (2006), are conservative when there is heterogeneity under the null; (c) when the effect
correlates with its associated variance, the procedure discussed in Sun and McLain (2012) is no
longer valid but the proposed procedures control size and have excellent power performance.
Details of the results are included in the online Appendix.

In the empirical section, we apply the proposed test to study the effect of attending a more
selective high school, using the Romanian administrative data set from Pop-Eleches and Urquiola
(2013). Instead of pooling students from different towns and schools together and estimating
the pooled effects of attending a more selective high school, we estimate town-specific and
school-specific treatment effects and we find strong evidence of treatment effect heterogeneity
across towns and schools. Further, the set of schools identified by our test of having positive
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treatment effects is also seen to have higher admission score cut-offs, suggesting that students
who marginally gain access to higher-ranked schools are more likely to benefit if the school is
more selective.

The remainder of this paper is organized as follows. In Section 2, we set up the model
and propose new multiple testing methods for one-sided hypotheses with normalization. Both
the Oracle and the adaptive procedures are discussed. In Section 3, we revisit Pop-Eleches
and Urquiola (2013) and we apply the proposed test to study the effect of going to a better
school in Romania. We conclude in Section 4. All proofs are given in Appendix B. Monte Carlo
simulations are given in the online Appendix.

2. METHODOLOGY

Following Sun and McLain (2012), consider m independent random variables (μ1, . . . , μm) that
follow a normal mixture distribution

μi | ηi, σi ∼ N (ηi, σi),

with a location parameter ηi and a standard deviation σi , which are random variables following
some joint distribution. In the treatment effect evaluation framework, μi can be an unbiased
treatment effect estimator for subpopulation i of observationally equivalent individuals whose
vector of characteristics X is equal to a fixed value xi . The location parameter ηi is then the
unknown treatment effect for that subpopulation.

We are interested in identifying the set I+ associated with a positive location parameter,
that is

I+ := {i | ηi > 0},
or subpopulations with positive treatment effects. Such a task is akin to performing a one-sided
hypothesis test simultaneously for all i. The cut-off value of the null hypothesis can be easily
extended to a fixed a, or the cut-off rule can be extended to ηi > a. In such cases, we can shift
the random variable by a and define μ̃i = μi − a, which reduces the problem back to the above
setting. We follow Sun and McLain (2012) in assuming that σi is known, but we allow σi to be
arbitrarily related with ηi . Let Si = μi/σi . It is easy to see that Si | νi ∼ N (νi, 1) with location
parameter νi = ηi/σi . The location parameter νi is a random variable with distribution G, which
is determined by the underlying joint distribution of (ηi, σi). The set of interest I+ can then be
transformed to

I+ = {i | νi > 0}.
We aim to construct a decision rule based on Si , i = 1, . . . , m. Let

δ(Z, z) := {δi = 1(Z(Si) < z), i = 1, . . . , m},
such that δi = 1 indicates that we decide that i belongs to the set I+. The decision rule consists
of two elements: the function Z(·) as some transformation of Si ; and the fixed value z as the
universal threshold for all i.

Given the decision rule, let Î+ := {i : δi = 1} be the set that collects all i that are identified to
have a positive location parameter. In the treatment effect context, Î+ includes all subpopulations
identified by the decision rule to have a positive treatment effect. The optimal decision rule
δ(Z, z) that minimizes the FNR, while controlling FDR under a pre-specified level α for the
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one-sided testing problem of interest, can be found via a decision theoretical framework, as
discussed in the rest of this section.

2.1. Oracle procedure for one-sided multiple test with composite null hypothesis

We first consider the Oracle case where we assume perfect knowledge of the distribution of
ν, G(ν). We show that the optimal transformation Z(·) can be based on either the likelihood
ratio statistics or the p-value. Both methods are optimal in the sense of minimizing the FNR
while controlling the FDR at a nominal level. The decision theoretical framework adopted in this
section does not rely on Si following a normal location mixture model. As long as the model for
Si has a hierarchical structure, such that, conditional on νi , Si has a parametric density function
ϕ(·), which depends on the individual-specific parameter νi , and νi are independent across i with
a common distribution, then the proposed procedure is optimal.1

Let Hi be an independent Bernoulli random variable with success probability p. For testing
purposes, we formulate the distribution of Si , without loss of generality, using a two-group
mixture model that distinguishes the null from the alternative,

Si | Hi ∼ (1 − Hi)F0 + HiF1,

where Hi = 0 corresponds to the event that i ∈ IC
+ or νi ∈ A ≡ (−∞, 0], F0 corresponds to the

distribution under the null with density f0(s) = (1/(1 − p))
∫
A

ϕ(s | ν)dG(ν) and F1 corresponds
to the distribution under the alternative with density f1(s) = (1/p)

∫
Ac ϕ(s | ν)dG(ν) and 1 −

p = ∫
A

dG(ν). Note that this formulation is valid no matter how νi is distributed.
The multiple testing problem results from simultaneously testing all m hypotheses. This is

a simple generalization of the two-group model for the simple versus composite hypothesis in,
for example, Efron et al. (2001) and Sun and Cai (2007) to the composite versus composite
hypothesis when A is not a singleton set.

2.1.1. Decision theoretical framework. Let the penalty of making a Type I error (falsely
rejecting a null case) be λ and that of making a Type II error (falsely accepting a non-null case) be
1. The loss function for each hypothesis given a decision rule δi is L(Hi, δi, λi) = λδi(1 − Hi) +
(1 − δi)Hi . The penalty λ is universal as Si is independent and identically distributed (i.i.d.). The
expected loss or the Bayes risk of the compound decision problem is then

E
[ m∑

i=1

L(Hi, δi, λ)
]

= m(λP(δi = 1,Hi = 0) + P(δi = 0,Hi = 1))

= m
(
(1 − p)λ

∫
δ(s)dF0(s) + p(1 −

∫
δ(s)dF1(s))

)

= m
(
p +

∫
δ(s)((1 − p)λf0(s) − pf 1(s)) ds

)
.

1 The density function ϕ is parametric in the sense that, conditional on νi , it is known up to a finite number of
structural parameters that are common to all i. We focus on the scalar case for νi as this is most common in practice. For
identifiability of the mixing distribution G (required later for the adaptive procedure), it suffices for ϕ to belong to the
one-parameter exponential family and the support for S to have a non-empty interior (see Pfanzagl, 1988). The decision
theoretical framework can be extended to the multivariate case if the hypotheses in the multiple testing problem involve
a vector of parameters. Identifiability of the mixing distribution needs to be discussed case by case.
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The optimal Bayes procedure that minimizes the Bayes risk is, for i = 1, 2, . . . , m,

δi =
{

1 if (1 − p)f0(si)/f (si) ≤ 1/(λ + 1)
0 if (1 − p)f0(si)/f (si) > 1/(λ + 1)

,

where f (si) = (1 − p)f0(si) + pf1(si) is the marginal density of Si . The quantity in the optimal
Bayes rule implies that the optimal transformation Z(s) in the decision rule δi = I {Z(s) ≤
1/(λ + 1)} takes the form Z(s) = (1 − p)f0(s)/f (s), which is a monotonic function of the
likelihood ratio. This transformation of s takes the same form as the local false discovery rate
(LFDR) statistics, proposed as the optimal test statistics in Efron et al. (2001) and Sun and
Cai (2007) for multiple testing with simple versus composite hypotheses. It continues to be the
optimal transformation for the composite versus composite case, except that f0 and f need to be
replaced with the corresponding mixture density. It can be interpreted as the posterior probability
of the event {νi ∈ A} conditional on the observation of Si .

Next, we study the choice of λ so that the decision rule δi controls the FDR under level α.
Denote the optimal cut-off by λ∗. We first introduce a condition on the density of S that is easy
to verify, followed by a lemma discussing the implication of the condition. Proposition 2.1 then
formalizes the choice of λ∗.

CONDITION 2.1. Let Si follow a parametric mixture distribution. Conditional on νi , denote
the density of Si as ϕ(· | νi). The density of Si satisfies the following monotonicity condition:
∇s log ϕ(s | ν) is increasing in ν.

LEMMA 2.1. (MONOTONICITY OF Z(s)) Let f0(s) be the marginal density of Si conditional
on {ν ≤ 0} and let f (s) be the marginal density of Si . Under Condition 2.1, the transformation
Z(s) = (1 − p)f0(s)/f (s) is monotonically decreasing in s. Given λ and the decision rule δi =
I {Z(Si) ≤ 1/(λ + 1)}, the rejection region for Si can be found as 	λ := [c(λ),∞] in which c(λ)
is the root of Z(c(λ)) = 1/(λ + 1) and c(λ) is increasing in λ.

Condition 2.1 is easy to verify. For example, the density functions of the normal, lognormal
and chi-squared distributions all satisfy Condition 2.1. More generally, for distributions
belonging to the exponential family whose density functions take the form ϕ(s | v) =
h(s) exp(η(v)T (s) − A(v)), Condition 2.1 is satisfied as long as the derivative η̇(v)Ṫ (s) > 0,
which is very easy to verify. When the density ϕ does not have a closed-form derivative, as
long as it is possible to evaluate Z(.) on a relevant support of Si , then the above monotonicity
assumption can be verified through a simple numerical analysis.

Lemma 2.1 implies that under Condition 2.1, the thresholding Bayes rule based on Z(Si) can
be equivalently formulated as a thresholding rule on Si itself. The following proposition proposes
an optimal thresholding rule.

PROPOSITION 2.1. Under Condition 2.1, the decision rule δi = I {Z(Si) ≤ 1/(λ∗ +
1)} = I {Si ≥ c(λ∗)} with λ∗ = inf{λ : (1 − p)(1 − F0(c(λ)))/(1 − F (c(λ))) = α} yields the
Oracle testing procedure that minimizes mFNR(λ) = pF0(c(λ))/F (c(λ)) while controlling
mFDR(λ) = (1 − p)(1 − F0(c(λ)))/(1 − F (c(λ))) at level α. Because mFDR = FDR + O(1/m)
and mFNR = FNR + O(1/m), the Oracle procedure controls FDR and minimizes FNR
asymptotically as m → ∞.

The marginal false discovery rate (mFDR) and its counterpart, the marginal false non-
discovery rate (mFNR) defined in Proposition 2.1, are frequently used in the multiple testing
literature, first introduced by Genovese and Wasserman (2002) and Storey (2002). Under
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Condition 2.1, the function mFDR(λ) = (1 − p)(1 − F0(c(λ))/(1 − F (c(λ))) is a decreasing
function of λ, and hence λ∗ can be uniquely found. Additionally, mFNR(λ) = pF0(c(λ))/F (c(λ))
is an increasing function of λ, which explains why λ∗ is found by setting the mFDR at an
exact level α such that the mFNR is minimized. Lemma B.1 in Appendix B shows that mFDR
and mFNR converge to FDR and FNR, respectively, as m → ∞, and characterizes the rate of
convergence.

Proposition 2.1 is closely related to the thresholding rule in Sun and Cai (2007) and Sun and
McLain (2012) for two-sided multiple testing. Their results rely on the crucial assumption of
a monotonic likelihood ratio (MLR) on the density of the LFDR statistics Z(Si). Violating the
MLR condition leads to ill-behaved thresholding procedures, as illustrated by several examples
in Cao et al. (2013). However, the MLR condition is very difficult to validate because the density
for the LFDR statistics usually does not exhibit an explicit form. Instead of focusing on the
distribution of the LFDR statistics, Proposition 2.1 characterizes the rejection region directly for
Si , and imposes an easy-to-verify monotonicity assumption on Z(Si).2

2.1.2. Oracle procedure based on p-values. Any monotonic transformation of the LFDR
statistics Z(s) will lead to an equivalent decision rule under Condition 2.1. One particular
monotonic transformation of interest links the decision rule to the p-value of Si under the least
favourable condition. The equivalence result is in contrast to the findings in Sun and Cai (2007)
and Sun and McLain (2012) for two-sided tests, where procedures based on LFDR statistics are
superior to those based on p-values. This is because for multiple testing problems involving two-
sided hypotheses, when the distribution G(ν) or the null set A is not symmetric around zero,
the Bayes rule yields a two-tailed rejection region on Si and the cut-off values at the two tails
are not necessarily equal in absolute values. The LFDR statistics adapt to such asymmetry while
the p-values, by construction, treat the two tails symmetrically. With one-sided hypotheses and
one-tailed rejection regions, however, it is always possible to find a p-value based decision rule
that is equivalent to the Oracle procedure using the LFDR statistics.

For a composite null such as H0 : νi ≤ 0, the common practice for constructing p-values is
first to reduce the composite null to a least favourable simple hypothesis H̄0 : νi = 0. Then, the
p-value is defined as Pi = 1 − ∫ Si

−∞ ϕ(s | 0)ds ≡ 1 − Fν=0(Si). Let Fv(x) = ∫ x

−∞ ϕ(s | ν)ds. The
distribution for Pi under H0 is

F 0
P (p) = P(Pi ≤ p | νi ≤ 0) =

∫ 0

−∞
1 − Fv(F−1

ν=0(1 − p))dG(ν)/
∫ 0

−∞
dG(ν).

Unless G(ν) has probability mass 1 − p at ν = 0 (i.e. there is no heterogeneity of ν on the null
region (−∞, 0]), F 0

P (p) is stochastically dominated by the uniform distribution. Continuing to
use the uniform distribution for the p-value under the null, the procedure still controls for size,
but it becomes increasingly conservative as the distribution F 0

P deviates away from the uniform
distribution. However, if we know the distribution G(ν), we can in fact characterize the exact
distribution for Pi under the composite null. This leads to the following Oracle procedure using
p-values.

2 For the two-sided testing problem considered in Sun and Cai (2007), a rejection region based directly on Si can
also be found. We can replace their MLR assumption on the density of Z(Si ) with a condition on the density of Si for
monotonicity of FDR to hold. The latter is an easy-to-verify condition as the distribution of Si is known.
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PROPOSITION 2.2. Under Condition 2.1, the Oracle procedure places a threshold for Pi

at u∗ (i.e. δi = I {Pi ≤ u∗}). The optimal cut-off u∗ is the solution to the equation (1 −
p)F 0

P (u)/FP (u) = α, where p = P(νi > 0), F 0
P (u) = P(Pi ≤ u | νi ≤ 0} and FP (u) = P(Pi ≤

u).

This shows that the optimal cut-off for p-values, u∗, has a one-to-one mapping to λ∗ defined
in Proposition 2.1, which implies that the two Oracle procedures are equivalent. In practice, the
p-value procedure boils down to calculating for each Pi the quantity (1 − p)F 0

P (Pi)/FP (Pi),
which is the q-value defined in Storey (2003). Proposition 2.2 generalizes the q-value for the
composite null case by replacing the uniform distribution for the p-value assumed in Storey
(2003) by its exact distribution F 0

P under the null.

2.2. Adaptive procedures

The Oracle procedures discussed above are not feasible unless we know the distribution G(ν).
Given the equivalence result discussed in the previous section, we focus on introducing adaptive
procedures based on p-values. Define the plug-in estimator for the q-value as

q̂i :=
∫ 0
−∞ 1 − Fν(F−1

ν=0(1 − pi))dĜ(ν)∫ ∞
−∞ 1 − Fν(F−1

ν=0(1 − pi))dĜ(ν)
,

with a consistent estimator Ĝ for G. The adaptive p-value procedure rejects all cases where q̂i is
below level α (i.e. δi = I {q̂i ≤ α}).

2.2.1. NPMLE and the benchmark adaptive procedure. Because νi is not directly observed
while Si is, the estimation of the distribution G(ν) turns into a deconvolution problem. We
propose to estimate the distribution G using the NPMLE method. Compared to the empirical
characteristic function based kernel method previously adopted in the literature, the NPMLE
method does not involve nuisance bandwidth selection and it delivers a consistent estimator Ĝ

for a broader class of the G distributions.
Let Ĝ be the NPMLE estimator of G, defined as

Ĝ = argmax
G∈G

{ m∑
i=1

log fi | fi =
∫

ϕ(Si | ν)dG(ν)
}
,

where G is the space of distribution functions.

LEMMA 2.2. Let Ĝ be the NPMLE for G. Suppose ϕ(· | ν) is a member of the one-parameter
exponential family and the support of the dominating measure for S has a non-empty interior.
Then, G is identifiable and Ĝ is strongly consistent, i.e. Ĝ(u) → G(u) for all u ∈ CG ≡ {u :
G is continuous at u} with probability one.

Lemma 2.2 is Theorem 33.10 of DasGupta (2008) adapted to our notation. The consistency
property of Ĝ was first established in Kiefer and Wolfowitz (1956) and further discussed in
Pfanzagl (1988) and van de Geer (1993). The normal location mixture model we consider at
the beginning of the section is included in the exponential family. Lindsay (1995) provides
a comprehensive survey of mixture models in general. The commonly used algorithm for
computing the NPMLE is the EM algorithm, proposed in Laird (1978), but the slow convergence
of the algorithm makes it inaccessible when the sample size m is large or when the distribution G

has a complicated structure. Koenker and Mizera (2014) have recently proposed a more efficient
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interior point algorithm for NPMLE that makes it computationally feasible for applications to
large-scale problems. In this paper, we adopt the computation method developed by Koenker and
Mizera (2014). Next, we describe the procedure in the context of our deconvolution problem (i.e.
the estimation of G(v)).

Discretizing the domain of ν to a fixed grid {ν1, . . . , νJ }, the likelihood formulation can be
rewritten as a convex programming problem with linear constraints:

max
g∈S

{ m∑
i=1

log(fi) | f ≡ (f1 . . . fm)� = Ag
}
.

Here, the matrix A denotes an m × J matrix with elements Aij = ϕ(Si | νj ) and g is a J × 1
vector that belongs to the unit simplex S = {g ∈ R

J | ∑J
j=1 gj
j = 1, g ≥ 0} with 
j as the

j th grid width. As characterized in Theorem 2 of Koenker and Mizera (2014), the unique solution
to the convex programming problem, Ĝ, exists and is an atomic probability measure, with no
more than m atoms.

Unlike the kernel density estimation method used in Sun and McLain (2012), the NPMLE
method does not involve a bandwidth selection. Although the grid size J is indeed a user input
parameter, it is very different from the bandwidth selection problem in kernel density estimation.
It is well known that kernel density estimators are sensitive to the bandwidth choice, and there
is a trade-off between bias and variance, so the optimal bandwidth often minimizes objectives
such as mean squared error or mean integrated squared error. However, the estimator Ĝ is not
sensitive to the choice of J once the grid size is sufficiently large. In other words, the choice of
grid size would not be an issue if practitioners were to have unlimited computation resources.
Further, because the new algorithm proposed by Koenker and Mizera (2014) is computationally
very efficient, practitioners can typically afford a sufficient grid size for problems of moderate
m. For example, in our simulation experiments and empirical example, the use of 100 and
500 grid points yields identical results for FDR, FNR and the coverage probability. However,
for extremely large-scale hypothesis testing problems (i.e. with millions of hypotheses), the
computational burden might be a concern. In such situations, Dicker and Zhao (2016) provide
some theoretical justification of choosing grid size J ≈ √

m.
The following theorem shows that the adaptive procedure that replaces G(ν) by its estimator

Ĝ(ν) is asymptotically equivalent to the Oracle procedure when there is no mass point at the
cut-off value of the one-sided null hypothesis.

THEOREM 2.1. Suppose that ϕ(· | ν) is a member of the one-parameter exponential family that
satisfies Condition 2.1, that the support of the dominating measure for S has a non-empty interior
and that the distribution G has no point mass at zero, the cut-off value of the one-sided null
hypotheses. The adaptive procedure replacing G by the NPMLE Ĝ is asymptotically equivalent
to the Oracle procedure. That is, the decision rule δi = I {q̂i ≤ α} controls mFDR at level α

asymptotically, and the associated mFNR converges to the Oracle mFNR as m → ∞.

The class of distributions for G allowed in Theorem 2.1 is larger than the adaptive procedure
that uses a kernel-based method, as in Sun and McLain (2012). The consistency of the NPMLE
method applies for distributions that are continuous, discrete, or consist of both a continuous part
and discontinuity points. The kernel-based deconvolution method, however, is only suitable for
G(ν) that are continuous with suitable smoothness conditions.3

3 For instance, for asymptotic validity of the adaptive procedures in Sun and McLain (2012), we need the density for ν

to be continuous, bounded and twice differentiable, and with a bounded second derivative.
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In spite of a large family of distributions for G, Theorem 2.1 requires that G has no
discontinuity point at the cut-off value of the one-sided null hypothesis. This is because, as stated
in Lemma 2.2, consistency of the NPMLE Ĝ implies consistency of all continuity points of G.
Suppose zero is the cut-off value and PG(ν = 0) > 0, then Ĝ(0) �→ G(0). Then, this further leads
to invalidity of the decision rule based on the classic NPMLE Ĝ. In the next section, we propose
a hybrid-NPMLE method that is robust to this special case, so that we can avoid imposing any
assumption on the distribution of G(.) at the cut-off value of the one-sided null.

2.2.2. Hybrid-NPMLE method. In this section, we extend the classic NPMLE method to a
hybrid version to account for the possibility that, in some applications, there might be a non-
trivial probability mass at the cut-off value of the one-sided null hypothesis. The hybrid method
imposes the point mass at zero into the linear constraints of the convex optimization problem.
Given that the probability mass at ν = 0 is 1 − ω and that for the rest of the support ν follows a
distribution H from the class H, which consists of well-defined distributions such that PH (ν �=
0) = 1, the marginal density of Si under these assumptions becomes

f (s) = (1 − ω)ϕ(s | 0) + ω

∫
ϕ(s | ν)dH(ν).

In the infeasible case where ω is known, the NPMLE estimator for H can be solved by, on a grid
for ν of size J ,

max
h∈S

{ m∑
i=1

log(fi) | f = Ãh
}
,

where h is a J -vector in the unit simplex and Ã denotes an m × J matrix with elements

Ãij = (1 − ω)ϕ(Si | 0) + ωϕ(Si | νj ).

Because ϕ(Si | 0) does not change over the grid for ν, the ith row of the linear constraints Ãh is
the grid approximation of the marginal density f (.), taking the form,

f (Si) = (1 − ω)ϕ(Si | 0) + ω

J∑
j=1

ϕ(Si | νj )hj ,

where hj is the j th element of the vector h.
When ω is unknown but can be consistently estimated by ω̂, we plug ω̂ into the linear

constraints in the matrix Ã and the NPMLE thus solved also leads to a consistent estimator for
H , which subsequently provides an asymptotically valid adaptive procedure. Results are formally
stated in Theorem 2.2. Consistent estimation of ω can be obtained using methods proposed by Jin
(2008) and Cao and Kosorok (2011). One advantage of our hybrid-NPMLE method is that unlike
the two-step approach in Sun and McLain (2012), which requires trimming away the test statistics
that fall in the range of the ω̂/2 and 1 − ω̂/2 quantile of S, denoted as [Qω̂/2(S),Q1−ω̂/2(S)]
when applying the kernel-based deconvolution for density H , our hybrid-NPMLE method does
not require data trimming and permits a broader class of distribution for H .

THEOREM 2.2. Suppose ϕ(· | ν) is a member of the exponential family that satisfies Condition
2.1 and the support of the dominating measure for S has a non-empty interior. Suppose the
distribution G of ν takes the form (1 − w)δ0 + wH (ν) where w ∈ [0, 1], δ0 is a Dirac function
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and H belongs to a family of distributions H. Let ω̂ be a consistent estimator for ω as m → ∞.
The adaptive procedure, based on Ĝ(ν) ≡ (1 − ŵ)δ0 + ŵĤ (ν) with

Ĥ ≡ argmax
H∈H

{ m∑
i=1

log
(
(1 − ŵ)ϕ(si | 0) + ŵ

∫
ϕ(si | ν)dH(v)

)}
,

is asymptotically equivalent to the Oracle procedure.

3. THE HETEROGENEOUS EFFECT OF GOING TO A BETTER HIGH SCHOOL

In recent years, much research – see, e.g. Hoekstra (2009), Duflo et al. (2011), Pop-Eleches
and Urquiola (2013), Abdulkadiroglu et al. (2014) and Shen and Zhang (2016) – in labour and
education economics has studied the effect of going to a more selective school. Findings in this
literature are not conclusive. For example, using an administrative data set from Romania, Pop-
Eleches and Urquiola (2013) find strong evidence that attending a more selective high school
significantly improves a student’s academic outcome, while Abdulkadiroglu et al. (2014) find
little evidence that attending a selective exam school in Boston and New York matters. In this
section, we revisit the Romanian data set studied by Pop-Eleches and Urquiola (2013). Instead of
pooling students from different towns and schools together and estimating the pooled effects of
attending a more selective high school, we estimate town-specific and school-specific treatment
effects and investigate potential treatment effect heterogeneity.

As is discussed in Pop-Eleches and Urquiola (2013), in Romania, a typical elementary school
student takes a nationwide test in the last year of elementary school (eighth grade) and applies to
a list of high schools and tracks. The admission decision is entirely dependent on the student’s
transition score, an average of the student’s performance on the nationwide test and grade point
average, as well as the student’s preference for schools and tracks. A student is admitted to the
most selective school and track for which he or she qualifies based on the transition score and
admission score cut-offs of different schools and tracks. Following Pop-Eleches and Urquiola
(2013), we use the regression discontinuity (RD) approach to identify and estimate the effect
of attending a higher-ranked school. The approach, in short, compares the average outcome of
students who are marginally admitted to a more selective high school with that of those who
marginally missed out and attended a less selective or non-selective school. Figure 1 replicates
Panels D and F of Figure 1 in Pop-Eleches and Urquiola (2013) and summarizes the concept
of the RD analysis; see Pop-Eleches and Urquiola (2013) for details. The x-axis, or the running
variable, in both graphs is the standardized transition score subtracting individual school cut-off.
The y-axis, or the outcome variable, in the left graph is the probability of a student taking the
Baccalaureate exam and that in the right graph is the Baccalaureate exam grade. We see clear
evidence of outcome discontinuity in the right graph but not so much in the left graph. This
indicates that, compared with students who marginally miss out, students who marginally gain
access to a higher-ranked school have similar exam-taking rate but higher average exam grade.
This is called the reduced-form effect. The treatment effect of attending a more selective school
is equal to the size of the discontinuity documented in the graphs for reduced-form effect divided
by the proportion of compliers at the score cut-off, or the proportion of marginal students who
attend a higher-ranked school when eligible to do so. The treatment effect always has the same
sign as the reduced-form effect.

C© 2017 Royal Economic Society.



www.manaraa.com

22 J. Gu and S. Shen

Figure 1. Pooled regression discontinuity analysis.

As discussed earlier, it is natural to expect that the effect of attending a better school varies
from town to town and from school to school. To investigate such heterogeneity, we repeat
the RD analysis conducted in Pop-Eleches and Urquiola (2013) for each town and then for
each school. We use the exact same specification as in Pop-Eleches and Urquiola (2013) with
a uniform kernel and a bandwidth equal to 1. We then further restrict our data set to remove
schools with an unbalanced RD design (i.e. schools with the left boundary of the running variable
falling inside the estimation window [−1, 1]). This leaves us with 106 towns and 503 schools.
We are interested in testing the null hypothesis that the treatment effect is non-positive for each
individual town or school. By doing this, we will be able to select out towns and schools with
positive treatment effects while controlling the FDR at various pre-determined levels (1%, 5%
and 10%). As studying the reduced-form effect avoids the potential weak first-stage problem
in finite sample inference, we carry out our test using the reduced-form estimates that compare
students who barely pass the transition score cut-off, and thus have access to a better school, with
those who barely miss out. Note that as our problem is a pure inference problem, the conclusion
of our multiple testing analysis can always be extended to the treatment effect of attending a
better school because the treatment effect and the reduced-form effect always have the same
sign. However, if researchers are interested in comparing the magnitude of treatment effects
among towns/schools, the reduced-form estimates would be uninformative unless the first stage
is homogeneous.

Using the notation in the methodology section, in this application, i is the town (and later
school) index; i = 1, . . . , 106 (and later i = 1, . . . , 503 for school heterogeneity). The random
variable μi is the population reduced-form effect of having access to a better school in town i

(and later school i). For reasons specified above, the set of interest I+ is the set of all towns
(and later schools) that have positive average reduced-form effects, which also implies positive
average treatment effect, of attending a better school. The statistic Si is the studentized estimator
for town-specific reduced-form effects. If the standard errors of the estimator are known for each
group (towns or schools), then the test statistics follow a standard normal distribution, which
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Figure 2. Distribution of treatment effect estimates: town-level heterogeneity. [Colour figure can be
viewed at wileyonlinelibrary.com]

belongs to the exponential family and satisfies Condition 2.1. As demonstrated by the simulation
included in the online Appendix, we do not expect the estimation of the standard errors to affect
the asymptotic properties of the proposed method. We also convert the statistic Si to a Z-score –
following suggestions in Efron et al. (2001) and Sun and Cai (2007) – as a robustness check and
we find almost identical results.4

Figure 2 plots the histograms of the town-specific μi (in the two left panels) and Si (in the
two middle panels) for 106 towns, as well as the hybrid-NPMLE deconvolution estimates for the
distribution of G(.) (in the two right panels). In the deconvolution graphs, the rugs at the lower
level show values of the studentized statistics in all towns, the rugs at the middle level show
values for towns rejected by the method in Sun and McLain (2012) and those at the upper level
show values for towns rejected by the proposed hybrid-NPMLE method.

The top three panels report town-specific effects of attending a better school on the
probability of a student taking the Baccalaureate exam. The proposed hybrid-NPMLE method
does not identify any town as having a positive effect. The bottom three panels capture town-
specific effects on average Baccalaureate exam grade. The proposed hybrid method finds 21
towns out of 106 that have significant positive effects.

Figure 2 also reports the multiple testing results using the procedures of Sun and McLain
(2012). As discussed earlier and illustrated with the simulation results, the method in Sun and
McLain (2012) does not apply and could have substantial inflation in FDR when the effect and

4 These results are omitted in the interest of space but can be obtained with the companion codes.
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Figure 3. Treatment effect distribution: school-level heterogeneity. [Colour figure can be viewed at
wileyonlinelibrary.com]

its associated standard deviation are correlated. This assumption is not likely to hold in this
empirical example. For the town-level analysis, the correlation coefficient between the effect
estimator and its associated standard error is 0.298 for the exam-taking rate outcome and 0.335
for the exam grade outcome. The procedure of Sun and McLain (2012) agrees with the proposed
method regarding towns with significant positive effects on the exam-taking rate, yet it rejects a
much larger number of towns (88 towns out of 106) for having a positive effect on exam grade
compared to the proposed procedure.

Next, we further disaggregate the data set to study the school-level treatment effect
heterogeneity. Comparing the histograms plotted in Figure 3 with those in Figure 2, we find that
the school-level estimates and statistics reveal stronger evidence of heterogeneous effects, which
is further confirmed by the non-parametric deconvolution results reported in the two graphs in
the right panel.

Figure 4 compares the set of schools rejected (represented by the solid circles) by the
proposed hybrid-NPMLE method with a 5% FDR control, with those not rejected (represented
by the open circles). The x-axis of the figure is the reduced-form effect estimate while the
y-axis is the school admission cut-off. Interestingly, for both outcomes (exam-taking rate and
average exam grade), the set of schools that are identified to have positive effects also has higher
admission score cut-offs. The difference in admission score cut-offs is large and statistically
significant. For the exam-taking rate, we find that schools identified by the proposed method
to have a positive effect have 0.5 (p-value < 0.0001) standard deviation higher admission
score cut-off; for the exam grade outcome, the difference is 0.3 (p-value < 0.0001) standard
deviation.
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Figure 4. The rejected set of schools.

Table 1. Multiple testing for positive treatment effects.

Take Baccalaureate exam Baccalaureate exam score

FDR = 1% FDR = 5% FDR = 10% FDR = 1% FDR = 5% FDR = 10%

Town level
Hybrid-NPMLE 0 0 0 7 14 21
Sun and McLain 0 0 0 40 70 88
BH 0 1 1 7 14 21
Holm 0 1 1 7 7 7
No. of hypotheses 106 106 106 106 106 106

School level
Hybrid-NPMLE 9 19 29 53 87 115
Sun and McLain 23 49 78 109 239 340
BH 11 17 22 45 70 88
Holm 5 7 10 24 31 35
No. of hypotheses 503 503 503 503 503 503

Note: The results for the hybrid-NPMLE, Sun and McLain, and BH procedures are based on tests with FDR controlled
at 1%, 5% and 10%, respectively. The results for the Holm procedure are based on tests with FWER controlled at 1%,
5% and 10%, respectively.

All the multiple testing results discussed in this section are summarized in Table 1, where
the number of rejected null hypotheses are reported for various testing methods. In summary, the
empirical section confirms the simulation evidence that the proposed hybrid-NPMLE procedure
has robust small-sample performance. When there is little evidence of negative treatment effects,
and the one-sided composite null is homogeneously zero, the proposed method gives rejection
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Table 2. Cut-off for p-values: school level.

Take Baccalaureate exam Baccalaureate exam score

FDR* = 1% FDR* = 5% FDR* = 10% FDR* = 1% FDR* = 5% FDR* = 10%

Hybrid-NPMLE 0.0002 0.0032 0.0086 0.0015 0.0161 0.0344
BH 0.0002 0.0017 0.0044 0.0009 0.0069 0.0168
Holm 9.26 × 10−6 8.35 × 10−5 0.0002 1.42 × 10−5 7.55 × 10−5 0.0002
No. of hypotheses 503 503 503 503 503 503

Note: The results for the hybrid-NPMLE and BH methods are based on tests with FDR controlled at 1%, 5% and 10%,
respectively. Results for the Holm procedure are based on tests with FWER controlled at 1%, 5% and 10%, respectively.

sets comparable to the classic BH procedure. When there is evidence for negative treatment
effects, the proposed method has better power than the BH procedure. To make the comparison
explicit, in Table 2 we report the adaptively estimated optimal cut-off value for p-values for the
hybrid-NPMLE, the BH and the Holm procedures, with FDR (or FWER for the Holm procedure)
controlled at the 1%, 5% and 10% levels, respectively. We only report the school-level analysis
as the cut-offs for the town-level analyses of hybrid-NPMLE and BH are almost identical.
Additionally, the procedure in Sun and McLain (2012) is omitted because of the violation of
the key independence assumption, as discussed above.

4. CONCLUSION

In this paper, we propose a multiple testing framework for identifying subpopulations with
positive responses to the outcome variable. There are many applications where this task is of
interest, especially for the treatment effect evaluation. This can be considered as a continuation
of the work by Lee and Shaikh (2013) and Armstrong and Shen (2015) who consider multiple
testing procedures for treatment effects that control the FWER. As recognized in Lee and Shaikh
(2013), their methodology is sufficient when the number of null hypotheses jointly tested is
modest. However, in some other applications, including the empirical example of this paper,
procedures controlling the FWER are too stringent and have low power once the number of tests
becomes large. Our FDR procedure is designed for multiple testing of a one-sided hypothesis
with a composite null. The adaptive version of the procedure uses classic NPMLE and a new
hybrid-NPMLE estimator for the effect distribution, instead of the conventionally used empirical
characteristic function based kernel estimator. NPMLE methods allow for a broader class of
treatment effect distributions. Monte Carlo simulations demonstrate that the adaptive procedure
has good size and power in comparison to many existing multiple testing procedures. We apply
the framework to study the effect of attending a more selective high school in Romania.

ACKNOWLEDGEMENTS

The authors would like to thank Roger Koenker, Stanislav Volgushev and seminar participants
at the Midwest Econometrics Group Meeting 2014, the University of Alberta, and the Simon
Fraser University for helpful comments. Jiaying Gu acknowledges financial support from the
Connaught Fund for the 2016–2018 New Researcher award. Part of the research was carried out

C© 2017 Royal Economic Society.



www.manaraa.com

Multiple one-sided testing 27

while Jiaying Gu was visiting Ruhr University Bochum. She is very grateful for the hospitality
of the Mathematics Department and acknowledges financial support from Project C1 of the SFB
823 of the German Research Foundation.

REFERENCES

Abdulkadiroglu, A., J. Angrist and P. Pathak (2014). The elite illusion: achievement effects at Boston and
New York exam schools. Econometrica 82, 137–96.

Anderson, M. L. (2008). Multiple inference and gender differences in the effects of early intervention: a
reevaluation of the Abecedarian, Perry Preschool, and early training projects. Journal of the American
Statistical Association 103, 1481–95.

Andrews, D. and G. Soares (2010). Inference for parameters defined by moment inequalities using
generalized moment selection. Econometrica 78, 119–57.

Armstrong, T. and S. Shen (2015). Inference for optimal treatment assignments. Working Paper, Yale
University.

Benjamini, Y. and Y. Hochberg (1995). Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of Royal Statistical Society, Series B 57, 289–
300.

Benjamini, Y., A. Krieger and D. Yekutieli (2006). Adaptive linear step-up procedures that control the false
discovery rate. Biometrika 93, 491–507.

Cao, H. and M. Kosorok (2011). Simultaneous critical values for t-tests in very high dimensions. Bernoulli
17, 347–94.

Cao, H., W. Sun and M. Kosorok (2013). The optimal power puzzle: scrutiny of the monotone likelihood
ratio assumption in multiple testing. Biometrika 100, 495–502.

DasGupta, A. (2008). Asymptotic Theory of Statistics and Probability, Springer Texts in Statistics. Berlin:
Springer.

Dicker, L. and S. D. Zhao (2016). High-dimensional classification via nonparametric empirical Bayes and
maximum likelihood. Biometrika 103, 21–34.

Duflo, E., P. Dupas and M. Kremer (2011). Peer effects, teacher incentives, and the impact of
tracking: evidence from a randomized evaluation in Kenya. American Economic Review 101(5), 1739–
74.

Efron, B. (2004a). Large-scale simultaneous hypothesis testing: the choice of a null hypothesis. Journal of
the American Statistical Association 99, 96–104.

Efron, B. (2004b). Local false discovery rate. Working paper, Stanford University.
Efron, B., R. Tibshirani, J. Storey and V. Tusher (2001). Empirical Bayes analysis of a microarray

experiment. Journal of the American Statistical Association 96, 1151–60.
Fishe, R. P. and A. D. Smith (2012). Identifying informed traders in futures markets. Journal of Financial

Markets 15, 329–59.
Genovese, C. and L. Wasserman (2002). Operating characteristic and extensions of the false discovery rate

procedure. Journal of the Royal Statistical Society, Series B 64, 499–517.
Hansen, P. R. (2005). A test for superior predictive ability. Journal of Business and Economic Statistics 23,

365–80.
Heller, R. (2010). Comment: Correlated z-values and the accuracy of large-scale statistical estimates.

Journal of the American Statistical Association 105, 1057–59.
Hoekstra, M. (2009). The effect of attending the flagship state university on earnings: a discontinuity-based

approach. Review of Economics and Statistics 91, 717–24.

C© 2017 Royal Economic Society.



www.manaraa.com

28 J. Gu and S. Shen

Hsu, Y.-C., C.-M. Kuan and M.-F. Yen (2014). A generalized stepwise procedure with improved power for
multiple inequalities testing. Journal of Financial Econometrics 12, 730–55.

Jin, J. (2008). Proportion of non-zero normal means: universal Oracle equivalences and uniformly consistent
estimators. Journal of Royal Statistical Society, Series B 70, 461–93.

Kiefer, J. and J. Wolfowitz (1956). Consistency of the maximum likelihood estimator in the presence of
infinitely many incidental parameters. Annals of Mathematical Statistics 27, 887–906.

Koenker, R. and I. Mizera (2014). Convex optimization, shape constraints, compound decisions and
empirical Bayes rules. Journal of the American Statistical Association 109, 674–85.

Laird, N. (1978). Nonparametric maximum likelihood estimation of a mixing distribution. Journal of the
American Statistical Association 73, 805–11.

Lee, S. and A. M. Shaikh (2013). Multiple testing and heterogeneous treatment effects: re-evaluating the
effect of progresa on school enrollment. Journal of Applied Econometrics 29, 612–26.

Lindsay, B. (1995). Mixture Models: Theory, Geometry and Applications. NSF-CBMS Regional
Conference Series in Probability and Statistics, Volume 5. Hayward, CA: Institute of Mathematical
Statistics.

Pfanzagl, J. (1988). Consistency of maximum likelihood estimators for certain nonparametric families, in
particular: mixtures. Journal of Statistical Planning and Inference 19, 137–58.

Pop-Eleches, C. and M. Urquiola (2013). Going to a better school: effects and behavioral responses.
American Economic Review 103(4), 1289–324.

Resnick, S. (1998). A Probability Path. Boston, MA: Birkhäuser.
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APPENDIX A: DEFINITION OF VARIOUS ERROR RATES IN MULTIPLE
TESTING

We provide the definitions of various multiple testing error rates that are commonly used in the literature
for the convenience of the readers. Suppose we are conducting m hypothesis tests simultaneously. We have
the following possible outcomes:
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Accept Reject Total

Null case (μi ≤ 0) U V m0

Non-null case (μi > 0) T S m − m0

m − R R m

(1) FWER control of level α guarantees P(V < 1) ≤ α;
(2) FDP control of level α guarantees P(V/R ≥ k) ≤ α for k ∈ (0, 1);
(3) FDR control of level α guarantees E[V/R] ≤ α.

APPENDIX B: PROOFS OF LEMMATA AND THEOREMS

Proof of Lemma 2.1: Note that we can write

Z(s) =
∫ 0

−∞ ϕ(s | ν)dG(ν)∫ ∞
−∞ ϕ(s | ν)dG(ν)

.

It suffices to show ∇sZ(s) ≤ 0:

∇s

∫ 0
−∞ ϕ(s | ν)dG(ν)∫ ∞
−∞ ϕ(s | ν)dG(ν)

=
∫ 0

−∞ ∇s log ϕ(s|ν)ϕ(s|ν)dG(ν)∫ ∞
−∞ ϕ(s|ν)dG(ν)

−
∫ 0

−∞ ϕ(s|ν)dG(ν)∫ ∞
−∞ ϕ(s|ν)dG(ν)

∫ ∞
−∞ ∇s log ϕ(s|ν)ϕ(s|ν)dG(ν)∫ ∞

−∞ ϕ(s|ν)dG(ν)

= E[I {ν ≤ 0}∇s log ϕ(s|ν) | s] − E[I {ν ≤ 0} | s]E[∇s log ϕ(s|ν) | s]

= Cov[I {ν ≤ 0},∇s log ϕ(s|ν) | s] ≤ 0

The last inequality is satisfied under Condition 2.1. Given the decision rule δi = I {Z(s) ≤ 1/(1 + λ)}
and monotonicity of Z(s), it is obvious that the rejection region takes the form [c(λ),∞). Further, by
monotonicity of Z(s), we have c(λ) increasing in λ. �

Proof of Proposition 2.1: First, we show that the procedure minimizes mFNR among all procedures that
control mFDR at or under α.

Because c(λ) is increasing in λ as proved in Lemma 2.1, it is sufficient to show that mFDR is decreasing
in c. Taking the derivative with respect to c by applying the fundamental theorem of calculus, we obtain

∂

∂c
mFDR = −(1 − p)f0(c)(1 − F (c)) − (1 − p)(1 − F0(c))(−(1 − p)f0(c) − pf1(c))

(1 − F (c))2

= (1 − p)p (f1(c)(1 − F0(c)) − f0(c)(1 − F1(c)))

(1 − F (c))2
< 0.

The last inequality follows by noticing

1 − F0(c)

1 − F1(c)
=

∫ ∞
c

f0(s)ds∫ ∞
c

(f1(s)/f0(s))f0(s)ds
<

∫ ∞
c

f0(s)ds∫ ∞
c

(f1(c)/f0(c))f0(s)ds
= f0(c)

f1(c)
.

The inequality results from the fact that f1(t)/f0(t) is increasing in t , because 1/Z(t) = f (t)/(1 −
p)f0(t) = 1 + pf1(t)/f0(t) is increasing in t , as proved in Lemma 2.1. Using the same argument, we can
prove that mFNR is monotonically increasing in c, and hence monotonically decreasing in λ. This suggests
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that we should choose mFDR at the maximally allowed level α, and that the chosen λ∗ leads to the optimal
Oracle procedure that minimizes mFNR while controlling mFDR at the nominal level.

Next we want to show the relationship between mFDR, mFNR and FDR, FNR stated in Lemma B.1.

LEMMA B.1. For a cut-off value c such that F0(c), F1(c) ∈ (0, 1), under Condition 2.1, we have E(FDP) =
(1 − p)(1 − F0(c))/(1 − F (c)) + O(m−1) and V (FDP) = O(m−1). Similarly, E(FNP) = pF1(c)/F (c) +
O(m−1) and V (FNP) = O(m−1).

Proof: Denote the cardinality of the set X+ as m1 and the cardinality of its compliment set as m0 and let
m = m0 + m1 as the total number of hypotheses and m1/m = p. Given the thresholding rule δi = I {Si ≥
c}, the FDP based on this decision rule can be found as

FDP =
∑

i∈X c+ I (Si ≥ c)∑
i∈X c+ I (Si ≥ c) + ∑

i∈X+ I (Si ≥ c)
I

(∑
i∈X

I (Si ≥ c) �= 0

)
.

First, consider the FDP for the case with m0 �= 0 conditioning on the event that
∑

i∈X I (Si ≥ c) �= 0:

FDP =
∑

i∈X c+ I (Si ≥ c)∑
i∈X+ I (Si ≥ c) + ∑

i∈X c+ I (Si ≥ c)

=
(1/m0)

∑
i∈X c+ I (Si ≥ c)

(1/m0)
∑

i∈X+ I (Si ≥ c) + (m1/m0)(1/m1)
∑

i∈X c+ I (Si ≥ c)
≡ A

A + (m1/m0)B
.

Given the two-group model for Si , we have
∑

i∈X c+ I (Si ≥ c) ∼ binomial(m0, 1 − F0(c)) and
∑

i∈X+ I (Si ≥
c) ∼ binomial(m1, 1 − F1(c)). So, E[A] = 1 − F0(c) ≡ A0 and E[B] = 1 − F1(c) ≡ B0, Var[A] =
(1/m0)F0(c)(1 − F0(c)), Var[B] = (1/m1)F1(c)(1 − F1(c)). We know that A, B ∈ [0, 1], A + (m1/m0)B >

0 and A0, B0 ∈ (0, 1). Taylor expansion of the random quantity FDP around the ratio of the mean of the
binomial random variable leads to

FDP = A

A + (m1/m0)B
= A0

A0 + (m1/m0)B0

+ (A − A0)
( (m1/m0)B0

(A0 + (m1/m0)B0)2

)
+ (B − B0)

( −(m1/m0)A0

(A0 + (m1/m0)B0)2

)

+ (A − A0)2
( −2(m1/m0)B̃

(Ã + (m1/m0)B̃)3

)
+ (B − B0)2

( 2(m1/m0)Ã

(Ã + (m1/m0)B̃)3

)

+ (A − A0)(B − B0)
(m1/m0)(Ã − (m1/m0)B̃)

(Ã + (m1/m0)B̃)3
,

where Ã and B̃ are between A and A0, and B and B0, respectively. It is clear that Ã ∈ [0, 1] and B̃ ∈ [0, 1]
and Ã + (m1/m0)B̃ > 0.

Taking expectation on both sides, we obtain

E
[
FDP

∣∣∣ ∑
i∈X

I (Si ≥ c) �= 0
]

= m0(1 − F0(c))

m0(1 − F0(c)) + m1(1 − F1(c))
+ O(Var[A]) + O(Var[B])

= m0(1 − F0(c))

m0(1 − F0(c)) + m1(1 − F1(c))
+ O

(
1

m

)
.

Because

P
( ∑

i∈X
I (Si ≥ c) = 0

)
= F

m0
0 (c)F m1

1 (c) = o

(
1

m

)
.
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Then

E[FDP] = E
[
FDP

∣∣∣∑
i∈X

I (Si ≥ c) �= 0
]
P

( ∑
i∈X

I (Si ≥ c) �= 0
)

= m0(1 − F0(c))

m0(1 − F0(c)) + m1(1 − F1(c))
+ O

(
1

m

)
.

If m0 = 0, both mFDR and FDR are zero and the lemma is trivial.
Similarly, we can show that V (FDP) = O(m−1). The variance behaviour provides some confidence that

controlling for FDR is almost as effective as controlling for FDP itself as the number of tests becomes large
because FDP will be concentrated around FDR with diminishing variance. Lastly, similar arguments also
lead to the results for FNP. �

Given the results in Lemma B.1, it is easy to see that the Oracle method controls FDR asymptotically.
Moreover, there does not exist another λ∗∗ such that the decision rule δi = I {Si ≥ c(λ∗∗)} controls FDR
asymptotically and achieves a lower FNR than the FNR achieved by λ∗, or FNR(λ∗) in the limit. Suppose
such an λ∗∗ exists. Because c(λ) is increasing in λ, mFDR(c) is decreasing in c and mFNR(c) is increasing
in c, we only need to consider the case where λ∗∗ = λ∗ − ε, where a positive sequence of ε converges to
0 as m → ∞. Decision rule with such an λ∗∗ controls nominal size asymptotically. Further, because both
mFDR and mFNR are continuous in λ, mFDR(λ∗∗) = α + δ1 and mFNR(λ) = mFNR(λ∗) − δ2 where both
δ1 and δ2 are positive and converges to 0 as m → ∞. Then we have

lim
m→∞

|FNR(λ) − FNR(λ∗)|

= lim
m→∞

|FNR(λ) − mFNR(λ) − (FNR(λ∗) − mFNR(λ∗) − δ2)|

≤ lim
m→∞

|FNR(λ) − mFNR(λ)| + lim
m→∞

|FNR(λ∗) − mFNR(λ∗)| + lim
m→∞

|δ2|

= 0.

Hence, asymptotically choosing λ∗ for the decision rule minimizes FNR while controlling FDR
asymptotically. �

Proof of Proposition 2.2: We observe that the optimal procedure based on p-values can be found using
the arguments in Proposition 2.1 except that the Z(s) transformation, instead of being the LFDR statistics,
now takes the form Z(s) = 1 − Fν=0(s). Notice that this new transformation Z(s) is also monotonically
decreasing in s. The proposition is then proved by setting c(λ) = F −1

ν=0(1 − u) in Proposition 2.1. This
provides a direct link between the p-value approach and the LFDR approach. u∗ = 1 − Fν=0(c(λ∗)), where
λ∗ is the optimal penalty for Type I error found in Proposition 2.1. �

Proof of Theorem 2.1: Because the Oracle procedure rejects the ith hypothesis if qi ≤ α, it suffices to
prove that q̂i → qi uniformly for all i with probability one, where

qi =
∫ 0

−∞ 1 − Fν(F −1
ν=0(1 − pi))dG(ν)∫ +∞

−∞ 1 − Fν(F −1
ν=0(1 − pi))dG(v)

.

Given the definition of the p-value pi for each si , we can rewrite the above quantity as

qi =
∫ 0

−∞ 1 − F (si |ν)dG(v)∫ +∞
−∞ 1 − F (si |ν)dG(v)

,
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and likewise

q̂i =
∫ 0

−∞ 1 − F (si |ν)dĜ(v)∫ +∞
−∞ 1 − F (si |ν)dĜ(v)

,

where F (si |ν) is the distribution function for Si given ν. To prove consistency of q̂i uniformly in i, it
suffices to prove uniform consistency for the numerator and the denominator separately, and then to invoke
the continuous mapping theorem.

For the denominator, we have

sup
s

∣∣∣
∫ +∞

−∞
1 − F (s|ν)dĜ(ν) −

∫ +∞

−∞
1 − F (s|ν)dG(ν)

∣∣∣ = sup
s

∣∣∣F̂ (s) − F (s)
∣∣∣ → 0

with probability one, where F̂ (s) is the induced marginal distribution for S given Ĝ and F (s) is the true
marginal distribution for S. The convergence of F̂ (s) in sup-distance is via consistency of the mixture
density estimator in terms of Hellinger distance (cf. Example 4.2.4 of van de Geer, 2000), and the fact that
F (s) is continuous (see Theorem 2.1 of DasGupta, 2008).

For the numerator, without loss of generality, assume there is a discontinuity point at k in the interval
(−∞, 0). We need to show

sup
s

∣∣∣
∫ 0

−∞
1 − F (s|ν)dĜ(ν) −

∫ 0

−∞
1 − F (s|ν)dG(ν)

∣∣∣ → 0.

Denote H (s|ν) = 1 − F (s|ν), For some arbitrary ε > 0, rewrite the quantity in the absolute sign as

∫ k−ε

−∞
H (s|ν)d(Ĝ(ν) − G(ν)) +

∫ 0

k+ε

H (s|ν)d(Ĝ(ν) − G(ν)) +
∫ k+ε

k−ε

H (s|ν)d(Ĝ(ν) − G(ν)).

The first two terms converge to 0 uniformly over s because on the interval (−∞, k) there is no discontinuity
point, and point-wise convergence of Ĝ implies uniform convergence on all intervals (−∞, k − ε] for all
ε > 0. Hence, using integration by parts, we have for the first term

sup
s

∣∣∣
∫ k−ε

−∞
H (s|ν)d(Ĝ(ν) − G(ν))

∣∣∣
≤ sup

s

H (s|k − ε)|Ĝ(k − ε) − G(k − ε)| + lim
ν→−∞

sup
s

H (s|ν)|Ĝ(ν) − G(ν)|

+ sup
ν∈(−∞,k−ε]

|Ĝ(ν) − G(ν)| sup
s

∫ k−ε

−∞
dH(s|ν) → 0.

A similar argument holds for the second term.
For the third term, as ε can be arbitrarily small, we have

sup
s

∣∣∣
∫ k+ε

k−ε

H (s|ν)d(Ĝ(ν) − G(ν))
∣∣∣

= sup
s

∣∣∣H (s|k)
(
(Ĝ(k + ε) − G(k + ε)) − (Ĝ(k − ε) − G(k − ε))

) ∣∣∣

+ sup
s

∣∣∣
∫ k+ε

k−ε

H (s|u) − H (s|k)d(Ĝ(u) − G(u))
∣∣∣

≤ sup
s

H (s|k)
(|Ĝ(k + ε) − G(k + ε)| + |Ĝ(k − ε) − G(k − ε)|)
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+ sup
s

∫ k+ε

k−ε

|H (s|u) − H (s|k)|dĜ(u) + sup
s

∫ k+ε

k−ε

|H (s|u) − H (s|k)|dG(u)

≤ |Ĝ(k + ε) − G(k + ε)| + |Ĝ(k − ε) − G(k − ε)| + 2 sup
s

sup
|u−k|≤ε

|H (s|u) − H (s|k)| → 0.

The last inequality is because sup
s

H (s|k) ≤ 1 and
∫ k+ε

k−ε
dĜ(u) ≤ 1 and

∫ k+ε

k−ε
dG(u) ≤ 1. The last

convergence is because of the uniform convergence of Ĝ on continuous point k − ε and k + ε and
sups sup|u−k|≤ε |H (s|u) − H (s|k)| → 0 as long as F (s|ν) is uniformly continuous in both arguments.

This establishes that q̂i → qi uniformly for all i with probability one. The mFDR of the decision rule
δ̂i = I {q̂i ≤ α} is (1 − p)PH0 (δ̂i = 1)/P(δ̂i = 1), which converges to (1 − p)PH0 (δi = 1)/P(δi = 1) = α.
Additionally, the associated mFNR of decision rule δ̂i is pPH1 (δ̂i = 0)/P(δ̂i = 0) which converges to
pPH1 (δi = 0)/P(δi = 0), the mFNR for the Oracle procedure. �

Proof of Theorem 2.2: In the proof, we denote ŵ and Ĥ defined in the theorem by ŵm and Ĥm to emphasize
the feature that they are sequences of m, the number of hypotheses tested. It suffices to show that Ĥm is
a consistent estimator of H . First, let us define H̃ ≡ argmax

H∈H
(1/m)

∑m

i=1 log{(1 − w)ϕ(si | 0) + w
∫

ϕ(si |
v)dH(v)}, which corresponds to the NPMLE if we were to know the true w. It is easy to see that H̃ is a
consistent estimator of H via the usual argument for consistency of NPMLE; see, e.g. Pfanzagl (1988).

The idea of the proof is to show that provided ŵm

p→ w, the criteria function that defines H̃ is close to the
criteria function that defines Ĥ uniformly over H ∈ H, which further leads to the strong consistency of Ĥ ,
and hence Ĥ can be used in replacement of H̃ in the adaptive procedure.

Denote �(si , w, H ) ≡ (1 − w)ϕ(si | 0) + w
∫

ϕ(si | v)dH(v). First, we consider the end points of w

(i.e. w = 0 and w = 1). When w = 0,

sup
H∈H

∣∣∣ 1

m

m∑
i=1

log �(si , ŵm, H ) − 1

m

m∑
i=1

log �(si , w, H )
∣∣∣

= sup
H∈H

∣∣∣ 1

m

m∑
i=1

log
ϕ(si | 0)

(1 − ŵm)ϕ(si | 0) + ŵm

∫
ϕ(si | v)dH(v)

∣∣∣

≤ 1

m

m∑
i=1

log sup
H∈H

∣∣∣ ϕ(si | 0)

(1 − ŵm)ϕ(si | 0) + ŵm

∫
ϕ(si | v)dH(v)

∣∣∣

≤ 1

m

m∑
i=1

log sup
H∈H

∣∣∣ ϕ(si | 0)

(1 − ŵm)ϕ(si | 0)

∣∣∣

= log
∣∣∣ 1

1 − ŵm

∣∣∣ p→ 0.

When w = 1,

sup
H∈H

∣∣∣ 1

m

m∑
i=1

log �(si , ŵm, H ) − 1

m

m∑
i=1

log �(si , w, H )
∣∣∣

= sup
H∈H

∣∣∣ 1

m

m∑
i=1

log

∫
ϕ(si | v)dH(v)

(1 − ŵm)ϕ(si | 0) + ŵm

∫
ϕ(si | v)dH(v)

∣∣∣

≤ 1

m

m∑
i=1

log sup
H∈H

∣∣∣
∫

ϕ(si | v)dH(v)

(1 − ŵm)ϕ(si | 0) + ŵm

∫
ϕ(si | v)dH(v)

∣∣∣
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≤ 1

m

m∑
i=1

log sup
H∈H

∣∣∣
∫

ϕ(si | v)dH(v)

ŵm

∫
ϕ(si | v)dH(v)

∣∣∣

= log
∣∣∣ 1

ŵm

∣∣∣ p→ 0.

For any w ∈ (0, 1), via Taylor expansion of (1/m)
∑m

i=1 log �(si , ŵm, H ) around (1/m)∑m

i=1 log �(si , w,H ), we have, for w̃i = αiŵm + (1 − αi)w,

1

m

m∑
i=1

log �(si , ŵm, H )

= 1

m

m∑
i=1

log
(
�(si , w,H ) + (w − ŵm)ϕ(si | 0) + (ŵm − w)

∫
ϕ(si | v)dH(v)

)

= 1

m

m∑
i=1

log(�(si , w, H )) + (w − ŵm)ϕ(si | 0) + (ŵm − w)
∫

ϕ(si | v)dH(v)

(1 − w̃i)ϕ(si | 0) + w̃i

∫
ϕ(si | v)dH(v)

.

Then we have

sup
H∈H

∣∣∣ 1

m

m∑
i=1

log �(si , ŵm, H ) − 1

m

m∑
i=1

log �(si , w, H )
∣∣∣

= sup
H∈H

∣∣∣(ŵm − w)
1

m

m∑
i=1

ϕ(si | 0) − ∫
ϕ(si | v)dH(v)

(1 − w̃i)ϕ(si | 0) + w̃i

∫
ϕ(si | v)dH(v)

∣∣∣

≤ |ŵm − w|
m

m∑
i=1

(
sup
H∈H

∣∣∣ ϕ(si | 0)

(1 − w̃i)ϕ(si | 0) + w̃i

∫
ϕ(si | v)dH(v)

∣∣∣)

+|ŵm − w|
m

m∑
i=1

(
sup
H∈H

∣∣∣
∫

ϕ(si | v)dH(v)

(1 − w̃i)ϕ(si | 0) + w̃i

∫
ϕ(si | v)dH(v)

∣∣∣)

≤ |ŵm − w|
( 1

m

m∑
i=1

∣∣∣ ϕ(si | 0)

(1 − w̃i)ϕ(si | 0)

∣∣∣ + 1

m

m∑
i=1

∣∣∣
∫

ϕ(si | v)dH(v)

w̃i

∫
ϕ(si | v)dH(v)

∣∣∣)

≤ |ŵm − w| 1

m

m∑
i=1

(∣∣∣ 1

1 − w̃i

∣∣∣ +
∣∣∣ 1

w̃i

∣∣∣)

≤ |ŵm − w|
∣∣∣ 1

(w ∨ ŵm)(1 − (w ∧ ŵm))

∣∣∣ p→ 0,

with (a ∨ b) ≡ min(a, b) and (a ∧ b) ≡ max(a, b). The last inequality is because wi lies in between ŵm and

w for all i = 1, 2, . . . , m. The last convergence result is due to the fact that if ŵm

p→ w as m → ∞ and w

is bounded away from zero and one.
When w is known, the following uniform law of large numbers (ULLN) result holds

sup
H∈H

∣∣∣ 1

m

m∑
i=1

log �(si , w,H ) − E[log �(s1, w, H )]
∣∣∣ p→ 0.
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See detailed discussion in van de Geer (1993) on sufficient conditions for the ULLN to hold (Theorem
2.4) and the satisfaction of these sufficient conditions in the mixture model we consider here (Lemma 5.1).
Combining with the results derived above, we have

sup
H∈H

∣∣∣ 1

m

m∑
i=1

log �(si , ŵm, H ) − E[log �(s1, w, H )]
∣∣∣ p→ 0.

The above convergence in probability result is equivalent to (cf. Theorem 6.3.1 of Resnick, 1998) the
statement that for every subsequence mj , there has a further subsequence mj�

for which

sup
H∈H

∣∣∣ 1

mj�

mj�∑
i=1

log �(si , ŵmj�
, H ) − E[log �(s1, w,H )]

∣∣∣ a.s.→ 0.

Invoking Lemma 1.1 in van de Geer (1993), we have Hellinger convergence of the mixture density
estimator �(·, ŵmj�

, Ĥmj�
) to �(·, w, H ) a.s., where Ĥmj�

is the subsequence of hybrid-NPMLE estimators

that minimizes (1/mj�
)
∑mj�

i=1 log �(si , ŵmj�
, H ) among H ∈ H. Lemma 5.2 in van de Geer (1993) then

implies Ĥmj�
as defined in Lemma 2.2 is strongly consistent, provided H is identifiable; see also Example

4.2.4 in van de Geer (2000). Then, for the subsubsequence mj�
, we can use the same argument in the proof

of Theorem 2.1 to show that q̂i → q uniformly in i with probability one. Because the subsequence mj is

arbitrarily picked, this in turn gives that q̂i

p→ q uniformly in i. Using a similar argument as at the end of
the proof for Theorem 2.1 then implies that mFDR based on decision rule I {q̂i ≤ α} converges to α while
the mFNR based on the adaptive rule converges to the mFNR achieved by the Oracle. �
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